High Resolution Groundwater Models of the San Joaquin River Riparian Zone

for Evaluation of Surface Water/Groundwater Interactions under Alternate **River Flow Regimes**

> **Deborah Hathaway Gilbert Barth** Karen MacClune

July 11, 2008 **CWEMF Workshop**

 $\Sigma^2 \Pi$ S.S. Papadopulos & Associates, Inc.

Project Study Area:

Friant Dam to the Merced River

Model Capabilities

- Characterize
 - Near-river groundwater elevations
 - River seepage losses
 - Boundary flux (regional/local interface)
- As function of
 - River stage
 - River extent
 - Regional groundwater boundary conditions
 - Antecedent flow conditions and resulting groundwater condition

Model History - 1

- **1999-2000**: For SJRRHRP (USBR contract)
 - *Domain*: Extent of mapped riparian vegetation, 5 reaches
 - *Resolution*: 300 x 50 ft model cells, 5 to 13 model layers
 - *Parameterization*: Soil texture analysis, 300+ logs; calibration
 - *Calibration*: Reach 1 & 2 only, shallow piezometer data
 - *River boundary*: HEC-2 models (MEI, 2000), 3 flow exceedence levels
 - Code: MODFLOW, with custom package for 2-D unsaturated flow
 - *ET*: variable by plant group and time of year
 - *Applications*: Sensitivity analyses illustrating dynamic nature of surface water/groundwater conditions

Model Input: Land Surface and River Bottom Elevations, Reach 2

Distribution of Wells Providing Lithologic and Water-Level Data

River Cell Coverage under Alternate Discharge Profiles

Original Model Calibration in Reach 2 using data from 1999 pilot releases

b) River MP 220, Model Row 140

Example Sensitivity Analysis: Steady State Depth to Water under Alternate River Flow Conditions

Model History - 2

- **2005**: Model Update and Assessment of Proposed Restoration Hydrographs
 - Domain: Unchanged
 - *Resolution*: 300 x 50 ft model cells, 3 model layers
 - Parameterization: Updated, new monitoring data
 - *Calibration*: Reach 1 & 2, seepage losses and groundwater elevations
 - River boundary: Updated HEC-2 models (MEI '05), 6 RIV Pkgs
 - *ET*: variable by plant group and time of year
 - Applications: Evaluation of seepage losses and groundwater conditions with alternate restoration hydrographs

Updated Model Calibration, Spring 2005 Flood Release

River Coverage in Reach 2 for RIV Pkg at 500, 2,000 and 8,000 cfs

Updated Model Calibration, Spring 2005, River Seepage Targets

Simulated Groundwater Elevation before and after 2005 Peak Flow, Reach 2

Example Restoration Hydrograph and Simulated Reach Losses

Normal	Condition	H	/drograph
		_	

Date	Flow (cfs)	Reach 1a	Reach 1b	Reach 2a	Reach 2b	Total, cfs	Total acre-ft
10/1-1/31	500	46	30	166	3	245	59,772
2/1-2/25	1,000	77	53	96	279	505	25,041
2/26-4/6	2,000	89	57	83	81	310	24,595
4/7-5/3	4,000	155	88	100	86	429	22,975
5/4-5/13	2,000	-65	-29	18	-13	-89	-1,765
5/14-7/22	500	-4	-4	29	-8	13	1,805
7/23-9/30	500	29	16	37	2	84	11,663
Reach 1 and 2 Annual Seepage Loss, acre feet							

Simulated Groundwater Elevation, under Restoration Hydrograph for "Normal" Year, Reach 2, after "Dry" Year

Left: before 4,000 cfs peak Right: after 4,000 cfs peak

Observations

- River seepage losses are dynamic:
 - Non-linear dependency on river flow
 - Dependent on past year's flow history
 - Dependent on regional groundwater levels
 - Not all losses will return as bank storage.
- Groundwater elevations are dynamic:
 - Dependent on river flows
 - Dependent on pumping in near and distant regions
 - Impacted by vegetation and stream bed

Implications

- River losses will vary substantially throughout a season;
- Losses in any given year will likely vary from those seen in a prior year.
- Making most efficient use of available water to meet river restoration goals will require sophisticated understanding of groundwater conditions impacting river seepage losses.

Improving Model Reliability

- DATA, DATA, DATA....
 - Groundwater piezometers
 - Well logs
 - Hydraulic testing
 - Land surface and river bed elevation data
 - Flow data
- CALIBRATE, VERIFY, CALIBRATE, VERIFY. CALIBRATE.....
 - Restoration program data can be used to refine tools and improve their value to the program in meeting water management and restoration goals.

